Chase Joyner

901 Homework 3

November 22, 2017

Problem 5.6
Suppose X € Ly and A and A,, are events.
(a) Show f{‘X|>n} XdP — 0.

Solution: Given X € L;, E[X '] and E[X ] are both finite and hence E[|X]|] is finite,
i.e. |X| € Li1. Note that XIjxjspy — 0 as n — oo and |[X I xsny| < |X] for all n.
Then, since |X| € L1, by the dominated convergence theorem,

lim Xdp :/ lim XI{xjsnydP = / 0dP = 0.

(b) Show that if P(A,) — 0, then [, XdP — 0.

Solution: First let X be a nonnegative random variable and consider for some M,

XdP :/ XdP—|—/ XdP
A, Ann{X<M} AnN{X>M}

< MP(A,N{X < M})+ / Xdp
{X>M}

< MP(A,) + / XdP.
{X>M}

Now since P(A,) — 0, we have

limsup/ XdP < / XdP.
n Ay {X>M}

Taking M — oo and using part (a) gives
limsup/ XdPgOSliminf/ XdP
n An n An

where the second inequality follows from X nonnegative. Thus, lim,_, [ A, XdP = 0.
Lastly, if X is not nonnegative, then

limsup/ XdP = lim XtdP — lim X dP=0-0=0
n An

n—00 An n—oo An

and similarly for liminf,, giving the result.



(c) Show [,|X|dP =0 iff P(AN{|X| > 0}) =0.

Solution: Assume [ 4 |X|dP = 0. Recall that any nonnegative random variable, say
| X |14, is the limit of a monotone increasing sequence of simple random variables. Then,

n2"

1 X|Ta > aplana, + nlangx|>n)
k=1

where we define ap = % and Ay = [%, 2%) Taking expectations gives

n2m
0= E[X|1a] > ) apP(AN Ag) + nP(AN{|X| > n}).
k=1

where we have = by assuming [4|X|dP = 0. Therefore, P(AN Ay) = 0 for all k =
1,..,n2" and P(AN{|X| > n}) = 0. By summing over k£ > 2 and adding P(AN {|X]| >
n}) = 0, we have P(AN {|X| > 27"}) = 0. Since AN {|X| > 27"} are monotone
increasing sets in n, we conclude

P(AN{|X|>0}) = lim P(AN{]X|>27"}) = lim 0=0.

Conversely, assume that P(AN {|X| > 0}) = 0. Define 4,, = AN {|X| > 1/n}. Note
that these sets are monotone increasing and

AN{|X| >0} = GAH.

n=1

Therefore, we have that
P{AN{|X]|>0}} = nh_)nolo P(A,) =0.
Now, by part (b) and the monotone convergence theorem,
/ X|dP = / X|I(AN{|X]| > 0})dP = / lim | X|I(A,)dP
A Q Qnee

MET iy / IX|I(Ap)dP = lim
0 n—oo

n—o0

ix(ap 2 o.

A

This concludes the result.
(d) If X € Ly, show Var(X) = 0 implies P(X = F(X)) = 1.

Solution: First note that
/ (X — E[X])?dP = Var(X) = 0.
Q

Then, by part (c), P((X — E[X])? > 0) =0, i.e. P(X = E[X]) =1 as desired.



(e) Suppose that (£2,B,P) is a probability space and A; € B,i = 1,2. Define the distance
d: Bx B — R by d(A;, Ay) = P(A1AAs). Prove that if A,, A € B and d(A4,,A) — 0, then
fAn XdP — [, XdP so that the map A — [, XdP is continuous.

Solution: First note that
P(A,AA)=P(A,NA°) + P(AN AS).

Then since P(A,AA) — 0, P(A, N A°) — 0 and P(AN AS) — 0. Thus, by part (b),

/ XdP—/XdP:/ XdP+/ XdP—/ XdP—/ XdP
An A AnnA AnnAe ANAy, ANAg

= / XdP — / XdP
AnnAe ANAg

—0-0=0.

Likewise for [, XdP — [, XdP, and hence we have | [, XdP — [, XdP| — 0. This
proves the result.

Problem 5.9

Use Fubini’s theorem to show for a distribution function F'(z)

/ (F(z+a) — F(z))dz = a,
R

where dx can be interpreted as Lebesgue measure.

Solution: Note that z <t < x + a implies t — a < = < t. Therefore, by Fubini’s theorem,
r+a t
/ (F(z+a) — F(z))ds = / / f(t)dtdx = / f(t)dxdt
R RJx R Jt—a

_/Rf(t)/t;dxdt_/Raf(t)dt—a.

Problem 5.20

For a random variable X with distribution F', define the moment generating function ¢(\) by
d(N\) = E(e™MX). Let A = {\ € R: ¢()\) < oo} and set Ao = supA. Lastly, define the measure F)
by Fa(I) = [, %F(dm), X € A.

(a) Prove that ¢(\) = [ e F(dx).
Solution: This follows directly from the fact that Elg(X)] = [ g(x)F(dz).



(b) Prove for A in the interior of A that ¢(A\) > 0 and ¢(\) is continuous on the interior of A.

Solution: Suppose ¢()\) = 0. This implies that E[e*X] = 0, i.e. ¢* = 0 almost every-
where. However, this function is only 0 at 0o and so this cannot happen. Therefore,
»(A) > 0. Next we show that ¢()\) is continuous on the interior of A. Let A be in the
interior of A. Then, there exists an € > 0 such that (A — ¢, A + €) € A. Now, assume
An — A. Then, for § where 0 < § < ¢, there exists an ng such that |A — \,| < J for all
n > ng. That is, A —d < Ay < A+ 4 for all n > ng. Using this, we have

et < 6()\+5)x _{_6()\76)3:

for all n > ng. Since 0 < § < e, A+ and A — § are in A. Therefore, we can use the
dominated convergence to obtain

lim [ eM*F(dx) :/ lim e*?F(dz) :/SAxF(dZL').
R

(c) Give an example where (i) Ao € A and (ii) Ao & A.

Solution: Consider the density function

ce *

f(w):m

I(z > 0),

where c is the normalizing constant to ensure this is a valid probability density function.
Then, certainly Ao = 1. But,

o0 c
" dr=
/0 Qtz2" ¢

and so Ay, € A. Now consider

flz) = (1+x)I(a:>O),

where c is a different normalizing constant than before. Again, Ao = 1 but this time

>~ 1
/ ———dx =00
and so A\ € A.

(d) If F has a density f, verify F has a density f\. What is f,? (Note that the family {fy, A € A}
is an exponential family of densities.)

Solution: By the definition of F) given above,

6)\1 6)\:1:
(D) = /I Sl = /I LG

This implies that fy(xz) = £




(e) If F(I) =0, show F)\(I) =0 as well for [ a finite interval and A\ € A.

Solution: Given F(I) =0, we have

F(I)= /If(x)dx =0

which implies that f = 0 almost everywhere. Consequently, fy = 0 almost everywhere
and so F)\(I) =0.

Problem 6.12
Let {X,,} be a sequence of random variables.
(a) If X, LS 0, then for any p > 0,

X.P P < | Xn? )
—— =0 6.21 and FEF|——-] =0 6.22).
e 0 (62 ERpar (6.22)

Solution: For 0 < e < 1,

|Xn|p €
pl 2 S U plix, >/t
{1+|Xn|P_6 Xnl 2 /3= =0

since X,, = 0. This shows (6.21). To show (6.22), define the set A,, = {|X,,| < €}. Then,

Xn|P X,|P Xn|P
E(|”|) :/ |”dp+/ %dp
1+ |Xn‘p Anp 1+ |Xn|p A 1+ |Xn|p

S/ !Xn\deJr/ dP
n A

< eP(A,) + P(AS).

Now, since € was arbitrary, we have

B (Xl N < pracy o
1) <P

as n — oo since X, — 0. This shows (6.22).

(b) If (6.21) holds for some p > 0, then X, £o.

Solution: For ¢ > 0, we have

Px,| = p{ X" o @ 1,
€ =
= L+ [XnP 1 +eP

as n — 0o because of (6.21).



(¢) Suppose p > 0. Show X, 2o iff (6.22).

Solution: The forward direction has been proven in part (a). We prove the re-
verse direction by way of contraposition. Assume there exists an ¢y > 0 such that
limy, 00 P(A,) > 0, where A,, = {|X,,| > eo}. Then,

X,|P X, |P X,|P
lim F i = lim / MdPZ lim idp
n—o00 1+’Xn|p n—00 Ql |X |p n—oo J 4 1+‘Xn|p
p
> i =
> i, 1+eodP i, T g P > 0.

This proves the result.

Problem 6.23

A classical transform result says the following: Suppose u,, > 0 and w, — u as n — oco. For
0 < s < 1, define the generating function

o0
= E UpS"
n=0

Show that lirri(l — $)U(s) = u by the following relatively painless method which uses convergence
S—

in probability: Let T'(s) be a geometric random variable satisfying P(T'(s) = n) = (1 — s)s™. Then

T(s) L 0. What is E(ur(s)?

Solution: First see that
(L=9)U(s) = (1= 5) Y uns” =Y un(l = 5)s" = Elur(y)).
n=0 n=0

Therefore, it suffices to show E(urp(,)) — u as s — 1. Consider

|E(up(s)) — ul = Zun =n)—u

< Z lun — u|P(T(s) = n).
n=0

Since u,, — u, then for any € > 0, there exists an ng such that |u, — u| < € for all n > ny.
Take M = max{|u; —u|: i =1,...,m9 — 1}. Then, we have

ng—1 00 no—1
|E(up —u|<MZ k)+ed P(T(s)=k) <M > (1-s)s'+e
k=ng k=0

Now taking s — 1, we have lims_1 [E(up(s)) —u| < €. Since € > 0 was arbitrary, we conclude
limg 1 [E(up(s)) — u| = 0, which is what we needed to show.



Problem 6.30

For a random variable X, define || X||c = sup{z: P(|X| > z) > 0}. Let L be the set of all
random variables X for which || X||s < o0.

(a) Show that for a random variable X and 1 < p < ¢ < oo,
0 < [[XT[ < [[X1lp < 1 X[lg < [1X[[oo-

Solution: First note that ||X||; < ||X||, follows immediately from Holder’s inequality.
Let Z = |X|P. Since ¢ > p, then ¢/p > 1 and so by Holder’s inequality,

E[|X"] = E[|Z - 1] < E[|Z|*/"]P/4 -1 = E[|.X|]"/".

Raising both sides to the 1/p gives || X||, < || X]|4. For the last inequality, define the
set A = {|X]| > ||X||ec}. Then, P(A) = 0, because otherwise ||X || wouldn’t be the
supremum. Therefore, we have

Bllxp = [ 1xjap = [ (xpap < [ ixigap = X
Q Ae Ae
Raising both sides to 1/¢ gives || X||; < || X || and the problem is complete.
(b) For 1 < p < ¢ < o0, show Lo, C L; C L, C Ly.
Solution: This follows immediately from part (a).
(c) Show Holder’s inequality holds in the form E(|XY|) <||X||1]]Y]|oc-

Solution: Consider the set A = {|Y| > ||Y ||} from part (a). Then,
E(IXY]) = / IXY|dP = / 1X||Y|dP
Q Ac
< [ XUYllaar =Yl [ 1XlaP
Ac Ac
= ¥lle [ 1P = 1]
Q
which proves the result.
(d) Show Minkowski’s inequality holds in the form ||X + Y||oo < [|X||oo + ||Y]]oo-

Solution: Define the sets

A={x: P(|X| >=x) >0}
B={z: P(]Y|>z) >0}
AB={z: P(|X+Y|>z)>0}.

Let a € AB. Then, P(|X +Y| > a) > 0, and so P(|X|+ |Y| > a) > 0. By denseness,

{XI+[Y]>a}= |J {IX]>ra V] >y}

re,ry€Q
T +ry >a



Since the left hand side has positive probability, there must exist an r;,r, such that
P(|X| > ry|Y| > 7y) > 0 and a < ry + ry. This implies P(|X| > r;) > 0 and
P(lY|>ry) >0,ie. ry € Aand r, € B. Lastly, taking supremums of a < r, + r, over
each of the three sets will give || X 4+ Yoo < [|X||oo + ||Y||oo-



