
Chase Joyner

901 Homework 3

November 22, 2017

Problem 5.6

Suppose X ∈ L1 and A and An are events.

(a) Show
∫
{|X|>n}XdP → 0.

Solution: Given X ∈ L1, E[X+] and E[X−] are both finite and hence E[|X|] is finite,
i.e. |X| ∈ L1. Note that XI{|X|>n} → 0 as n → ∞ and |XI{|X|>n}| ≤ |X| for all n.
Then, since |X| ∈ L1, by the dominated convergence theorem,

lim
n→∞

∫
{|X|>n}

XdP =

∫
Ω

lim
n→∞

XI{|X|>n}dP =

∫
Ω

0dP = 0.

(b) Show that if P (An)→ 0, then
∫
An
XdP → 0.

Solution: First let X be a nonnegative random variable and consider for some M ,∫
An

XdP =

∫
An∩{X≤M}

XdP +

∫
An∩{X>M}

XdP

≤MP (An ∩ {X ≤M}) +

∫
{X>M}

XdP

≤MP (An) +

∫
{X>M}

XdP.

Now since P (An)→ 0, we have

lim sup
n

∫
An

XdP ≤
∫
{X>M}

XdP.

Taking M →∞ and using part (a) gives

lim sup
n

∫
An

XdP ≤ 0 ≤ lim inf
n

∫
An

XdP

where the second inequality follows from X nonnegative. Thus, limn→∞
∫
An
XdP = 0.

Lastly, if X is not nonnegative, then

lim sup
n

∫
An

XdP = lim
n→∞

∫
An

X+dP − lim
n→∞

∫
An

X−dP = 0− 0 = 0

and similarly for lim infn, giving the result.
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(c) Show
∫
A |X|dP = 0 iff P (A ∩ {|X| > 0}) = 0.

Solution: Assume
∫
A |X|dP = 0. Recall that any nonnegative random variable, say

|X|IA, is the limit of a monotone increasing sequence of simple random variables. Then,

|X|IA ≥
n2n∑
k=1

akIA∩Ak + nIA∩{|X|>n}

where we define ak = k−1
2n and Ak =

[
k−1
2n ,

k
2n

)
. Taking expectations gives

0
?
= E[|X|IA] ≥

n2n∑
k=1

akP (A ∩Ak) + nP (A ∩ {|X| > n}).

where we have
?
= by assuming

∫
A |X|dP = 0. Therefore, P (A ∩ Ak) = 0 for all k =

1, ..., n2n and P (A∩ {|X| > n}) = 0. By summing over k ≥ 2 and adding P (A∩ {|X| >
n}) = 0, we have P (A ∩ {|X| ≥ 2−n}) = 0. Since A ∩ {|X| ≥ 2−n} are monotone
increasing sets in n, we conclude

P (A ∩ {|X| > 0}) = lim
n→∞

P (A ∩ {|X| ≥ 2−n}) = lim
n→∞

0 = 0.

Conversely, assume that P (A ∩ {|X| > 0}) = 0. Define An = A ∩ {|X| > 1/n}. Note
that these sets are monotone increasing and

A ∩ {|X| > 0} =
∞⋃
n=1

An.

Therefore, we have that

P{A ∩ {|X| > 0}} = lim
n→∞

P (An) = 0.

Now, by part (b) and the monotone convergence theorem,∫
A
|X|dP =

∫
Ω
|X|I(A ∩ {|X| > 0})dP =

∫
Ω

lim
n→∞

|X|I(An)dP

MCT
= lim

n→∞

∫
Ω
|X|I(An)dP = lim

n→∞

∫
An

|X|dP (b)
= 0.

This concludes the result.

(d) If X ∈ L2, show Var(X) = 0 implies P (X = E(X)) = 1.

Solution: First note that ∫
Ω

(X − E[X])2dP = Var(X) = 0.

Then, by part (c), P ((X − E[X])2 > 0) = 0, i.e. P (X = E[X]) = 1 as desired.
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(e) Suppose that (Ω,B, P ) is a probability space and Ai ∈ B, i = 1, 2. Define the distance
d : B × B → R by d(A1, A2) = P (A1∆A2). Prove that if An, A ∈ B and d(An, A) → 0, then∫
An
XdP →

∫
AXdP so that the map A→

∫
AXdP is continuous.

Solution: First note that

P (An∆A) = P (An ∩Ac) + P (A ∩Acn).

Then since P (An∆A)→ 0, P (An ∩Ac)→ 0 and P (A ∩Acn)→ 0. Thus, by part (b),∫
An

XdP −
∫
A
XdP =

∫
An∩A

XdP +

∫
An∩Ac

XdP −
∫
A∩An

XdP −
∫
A∩Acn

XdP

=

∫
An∩Ac

XdP −
∫
A∩Acn

XdP

→ 0− 0 = 0.

Likewise for
∫
AXdP −

∫
An
XdP , and hence we have |

∫
An
XdP −

∫
AXdP | → 0. This

proves the result.

Problem 5.9

Use Fubini’s theorem to show for a distribution function F (x)∫
R

(
F (x+ a)− F (x)

)
dx = a,

where dx can be interpreted as Lebesgue measure.

Solution: Note that x < t < x+ a implies t− a < x < t. Therefore, by Fubini’s theorem,∫
R

(
F (x+ a)− F (x)

)
dx =

∫
R

∫ x+a

x
f(t)dtdx =

∫
R

∫ t

t−a
f(t)dxdt

=

∫
R
f(t)

∫ t

t−a
dxdt =

∫
R
af(t)dt = a.

Problem 5.20

For a random variable X with distribution F , define the moment generating function φ(λ) by
φ(λ) = E(eλX). Let Λ = {λ ∈ R : φ(λ) < ∞} and set λ∞ = sup Λ. Lastly, define the measure Fλ
by Fλ(I) =

∫
I
eλx

φ(λ)F (dx), λ ∈ Λ.

(a) Prove that φ(λ) =
∫
R e

λxF (dx).

Solution: This follows directly from the fact that E[g(X)] =
∫
R g(x)F (dx).
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(b) Prove for λ in the interior of Λ that φ(λ) > 0 and φ(λ) is continuous on the interior of Λ.

Solution: Suppose φ(λ) = 0. This implies that E[eλX ] = 0, i.e. eλx = 0 almost every-
where. However, this function is only 0 at ±∞ and so this cannot happen. Therefore,
φ(λ) > 0. Next we show that φ(λ) is continuous on the interior of Λ. Let λ be in the
interior of Λ. Then, there exists an ε > 0 such that (λ − ε, λ + ε) ∈ Λ. Now, assume
λn → λ. Then, for δ where 0 < δ < ε, there exists an n0 such that |λ − λn| < δ for all
n ≥ n0. That is, λ− δ < λn < λ+ δ for all n ≥ n0. Using this, we have

eλnx ≤ e(λ+δ)x + e(λ−δ)x

for all n ≥ n0. Since 0 < δ < ε, λ + δ and λ − δ are in Λ. Therefore, we can use the
dominated convergence to obtain

lim
n→∞

∫
R
eλnxF (dx) =

∫
R

lim
n→∞

eλnxF (dx) =

∫
R
eλxF (dx).

(c) Give an example where (i) λ∞ ∈ Λ and (ii) λ∞ 6∈ Λ.

Solution: Consider the density function

f(x) =
ce−x

(1 + x)2
I(x > 0),

where c is the normalizing constant to ensure this is a valid probability density function.
Then, certainly λ∞ = 1. But, ∫ ∞

0

c

(1 + x)2
dx = c

and so λ∞ ∈ Λ. Now consider

f(x) =
ce−x

(1 + x)
I(x > 0),

where c is a different normalizing constant than before. Again, λ∞ = 1 but this time∫ ∞
0

1

(1 + x)
dx =∞

and so λ∞ 6∈ Λ.

(d) If F has a density f , verify Fλ has a density fλ. What is fλ? (Note that the family {fλ, λ ∈ Λ}
is an exponential family of densities.)

Solution: By the definition of Fλ given above,

Fλ(I) =

∫
I

eλx

φ(λ)
F (dx) =

∫
I

eλx

φ(λ)
f(x)dx.

This implies that fλ(x) = eλx

φ(λ)f(x).
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(e) If F (I) = 0, show Fλ(I) = 0 as well for I a finite interval and λ ∈ Λ.

Solution: Given F (I) = 0, we have

F (I) =

∫
I
f(x)dx = 0

which implies that f = 0 almost everywhere. Consequently, fλ = 0 almost everywhere
and so Fλ(I) = 0.

Problem 6.12

Let {Xn} be a sequence of random variables.

(a) If Xn
P→ 0, then for any p > 0,

|Xn|p

1 + |Xn|p
P→ 0 (6.21) and E

(
|Xn|p

1 + |Xn|p

)
→ 0 (6.22).

Solution: For 0 < ε < 1,

P

{
|Xn|p

1 + |Xn|p
≥ ε
}

= P

{
|Xn| ≥ p

√
ε

1− ε

}
→ 0

since Xn
P→ 0. This shows (6.21). To show (6.22), define the set An = {|Xn| < ε}. Then,

E

(
|Xn|p

1 + |Xn|p

)
=

∫
An

|Xn|p

1 + |Xn|p
dP +

∫
Acn

|Xn|p

1 + |Xn|p
dP

≤
∫
An

|Xn|pdP +

∫
Acn

dP

< εP (An) + P (Acn).

Now, since ε was arbitrary, we have

E

(
|Xn|p

1 + |Xn|p

)
≤ P (Acn)→ 0

as n→∞ since Xn
P→ 0. This shows (6.22).

(b) If (6.21) holds for some p > 0, then Xn
P→ 0.

Solution: For ε > 0, we have

P{|Xn| ≥ ε} = P

{
|Xn|p

1 + |Xn|p
≥ εp

1 + εp

}
→ 0

as n→∞ because of (6.21).
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(c) Suppose p > 0. Show Xn
P→ 0 iff (6.22).

Solution: The forward direction has been proven in part (a). We prove the re-
verse direction by way of contraposition. Assume there exists an ε0 > 0 such that
limn→∞ P (An) > 0, where An = {|Xn| ≥ ε0}. Then,

lim
n→∞

E

(
|Xn|p

1 + |Xn|p

)
= lim

n→∞

∫
Ω

|Xn|p

1 + |Xn|p
dP ≥ lim

n→∞

∫
An

|Xn|p

1 + |Xn|p
dP

≥ lim
n→∞

∫
An

εp0
1 + εp0

dP = lim
n→∞

εp0
1 + εp0

P (An) > 0.

This proves the result.

Problem 6.23

A classical transform result says the following: Suppose un ≥ 0 and un → u as n → ∞. For
0 < s < 1, define the generating function

U(s) =
∞∑
n=0

uns
n.

Show that lim
s→1

(1− s)U(s) = u by the following relatively painless method which uses convergence

in probability: Let T (s) be a geometric random variable satisfying P (T (s) = n) = (1− s)sn. Then

T (s)
P→∞. What is E(uT (s))?

Solution: First see that

(1− s)U(s) = (1− s)
∞∑
n=0

uns
n =

∞∑
n=0

un(1− s)sn = E(uT (s)).

Therefore, it suffices to show E(uT (s))→ u as s→ 1. Consider

|E(uT (s))− u| =

∣∣∣∣∣
∞∑
n=0

unP (T (s) = n)− u

∣∣∣∣∣ =

∣∣∣∣∣
∞∑
n=0

(un − u)P (T (s) = n)

∣∣∣∣∣
≤
∞∑
n=0

|un − u|P (T (s) = n).

Since un → u, then for any ε > 0, there exists an n0 such that |un − u| < ε for all n ≥ n0.
Take M = max{|ui − u| : i = 1, ..., n0 − 1}. Then, we have

|E(uT (s))− u| < M

n0−1∑
k=0

P (T (s) = k) + ε

∞∑
k=n0

P (T (s) = k) ≤M
n0−1∑
k=0

(1− s)sk + ε.

Now taking s→ 1, we have lims→1 |E(uT (s))− u| < ε. Since ε > 0 was arbitrary, we conclude
lims→1 |E(uT (s))− u| = 0, which is what we needed to show.
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Problem 6.30

For a random variable X, define ||X||∞ = sup{x : P (|X| > x) > 0}. Let L∞ be the set of all
random variables X for which ||X||∞ <∞.

(a) Show that for a random variable X and 1 < p < q <∞,

0 ≤ ||X||1 ≤ ||X||p ≤ ||X||q ≤ ||X||∞.

Solution: First note that ||X||1 ≤ ||X||p follows immediately from Holder’s inequality.
Let Z = |X|p. Since q > p, then q/p > 1 and so by Holder’s inequality,

E[|X|p] = E[|Z · 1|] ≤ E[|Z|q/p]p/q · 1 = E[|X|q]p/q.

Raising both sides to the 1/p gives ||X||p ≤ ||X||q. For the last inequality, define the
set A = {|X| > ||X||∞}. Then, P (A) = 0, because otherwise ||X||∞ wouldn’t be the
supremum. Therefore, we have

E[|X|q] =

∫
Ω
|X|qdP =

∫
Ac
|X|qdP ≤

∫
Ac
||X||q∞dP = ||X||q∞.

Raising both sides to 1/q gives ||X||q ≤ ||X||∞ and the problem is complete.

(b) For 1 < p < q <∞, show L∞ ⊂ Lq ⊂ Lp ⊂ L1.

Solution: This follows immediately from part (a).

(c) Show Holder’s inequality holds in the form E(|XY |) ≤ ||X||1||Y ||∞.

Solution: Consider the set A = {|Y | > ||Y ||∞} from part (a). Then,

E(|XY |) =

∫
Ω
|XY |dP =

∫
Ac
|X||Y |dP

≤
∫
Ac
|X|||Y ||∞dP = ||Y ||∞

∫
Ac
|X|dP

= ||Y ||∞
∫

Ω
|X|dP = ||X||1,

which proves the result.

(d) Show Minkowski’s inequality holds in the form ||X + Y ||∞ ≤ ||X||∞ + ||Y ||∞.

Solution: Define the sets

A = {x : P (|X| > x) > 0}
B = {x : P (|Y | > x) > 0}

AB = {x : P (|X + Y | > x) > 0}.

Let a ∈ AB. Then, P (|X + Y | > a) > 0, and so P (|X|+ |Y | > a) > 0. By denseness,

{|X|+ |Y | > a} =
⋃

rx,ry∈Q
rx+ry>a

{|X| > rx, |Y | > ry}.
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Since the left hand side has positive probability, there must exist an rx, ry such that
P (|X| > rx, |Y | > ry) > 0 and a < rx + ry. This implies P (|X| > rx) > 0 and
P (|Y | > ry) > 0, i.e. rx ∈ A and ry ∈ B. Lastly, taking supremums of a < rx + ry over
each of the three sets will give ||X + Y ||∞ ≤ ||X||∞ + ||Y ||∞.

8


